Rayat Shikshan Sanstha's

K. B. P. MAHAVIDYALAYA, PANDHARPUR

DEPARTMENT OF STATISTICS

B.Sc. - III

(2020 - 2021)

LIST OF ADVANCED LEARNERS

Sr.	Name of the student	
No.	1000	
1	Akanksha Mahesh Waste	
2	Sangita Balasaheb jagtap	
3	Chaugule Archana Kumar	
4	Shinde Shital Dattatray	
5	Shweta Ramchandra Galande	
6	Dipali Hanumant Shinde	
7	Sanika sunil Bhagwat	
8	Pandhare Indira changdev	
9	Komal Sanjay Pawar	
10	Raut vijay pandurang	- 3

LIST OF SLOW LEARNERS

Sr.	Name of the student
No.	
1	Priyanka santosh jagdale
2	Sonali Rajiv Mahamuni

Rayat Shikshan Sanstha's

K. B. P. MAHAVIDYALAYA, PANDHARPUR

DEPARTMENT OF STATISTICS

B.Sc. - II

(2020 - 2021)

LIST OF ADVANCED LEARNERS

Sr.	Name of the student
No.	*
1	Tamboli Sahista Ahamad
2	Sarvade shivani narayan
3	Aadesh Chanda Chandankar
4	Shailesh dadasaheb survase
5	Dipali Shamrao Pawar
6	Shweta Ramdas Pawar
7	Monali kundalik bandgar
8	Prashant Sunil chavan
9	Sneha netaji ubale
10	Om kailas Surwase

LIST OF SLOW LEARNERS

Sr. No.	Name of the student
1	Bankar sonali sudhir
2	Vijay Balasaheb Surve
3	Bhosale Komal Kakasaheb
4	SUTAR shubham Hari
5	Harshavardhan navnath londhe

Rayat Shikshan Sanstha's

K. B. P. MAHAVIDYALAYA, PANDHARPUR

DEPARTMENT OF STATISTICS

B.Sc. – I

(2020 - 2021)

LIST OF ADVANCED LEARNERS

Sr.	Name of the student
No.	
1	Gaikwad Gitanjali Atmaram
2	Pakhare Mahesh Balasaheb
3	Saraswati Nagesh Korake
4	Bhosale Vishal Sanjay
5	KATKAR AISHWARYA SAVATA
6	Rutuja Sahadev Koli
7	Om ganesh jadhav
8	Sakshi anil sonavane
9	Aparna pramod babar
10	Akshada Prashant Chakorkar

LIST OF SLOW LEARNERS

Sr.	Name of the student	
No.		
1	Honkade Rahul Dilip	
2	Mayuri Sunil Bahirwade	
3	Randive ROHIT DATTA	

Rayat Shikshan Sanstha's Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur Department of Statistics

Time-Table of PPT Lectures Conducted by the Faculty Members $(2020-2021)\; SEM\; I$

Name of the Teacher	Class	Date	Time	Subject
Mr. S.L.	B.Sc. II	28/09/2 020	10:52- 02:04	Fitting of Binomial Distribution.
Bahadure	B.Sc. II	11/09/2 020	10:52- 02:04	Model sampling of Poisson Distribution.
	B.Sc. II	21/09/2 020	10:52- 02:04	Partial & Multiple Correlation.
Mr.Shinde	B.Sc. II	22/09/2 020	10:52- 02:04	Multiple Linear Regressions.
M.R.	B.Sc.III	27/09/2 020	1:16- 2:04	Systematic Sampling.
	B.Sc.III	11/09/2 020	12:28- 01:16	Custer Sampling.
Miss.Danda	B.Sc. II	22/09/2 020	03:02- 03:50	Exponential Distribution.
ge S.R	B.Sc. I	12/09/2 020	02:14- 05:00	Measures of central tendency.

	B.Sc.III	25/09/2 020	1:16- 2:04	Consistent Estimator.
	B.Sc.III	25/09/2 020	1:16- 2:04	Method of moment Estimator.
	B.Sc. III	14/10/2 020	12:28- 02:04	Some basic concept Used in LPP.
Miss.Bhosal e B.S.	B.Sc. III	16/10/2 020	12:28- 01:16	Graphical Method in LPP.
0	B.Sc. III	21/10/2 020	12:28- 02:04	Simplex Method in LPP.

Rayat shikshan Sanstha's

Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur

DepartmentOf Statistics

B.Sc.-II (Practical-III)

Expt.No.: 3.8

Date:

Title: - Tests based on Chi - square distribution.

(Test for population variance, Test for goodness of fit)

A random sample of 10 students was drawn from a class. The marks obtained by these 1. students were as follows:

42 39 38 15 52

The population variance of the marks is assumed to be 62. Test whether the data supports the hypothesis.

2. A random sample of size 10 from a normal population gave the following values:

65 72 74 77 61 63 69 71 Test the hypothesis that population variance is 32.

- A random sample of size 20 from a normal population gives the sample standard deviation 6. 3. Test the hypothesis that population s.d. is 9.
- A random sample of size 10 from a normal population gives s²=90. Test at 5% level of 4. significance the hypothesis $H_0: \sigma^2 = 80$ against $H_1: \sigma^2 \neq 80$.
- The theory predicts the population of beans in the four groups A,B,C and D should be 5. 9:3:3:1. In an experiment amount 1600 beans, the numbers in the four groups were 882,313,287 and 118. Does the experimental result support the theory?
- A sample analysis of examination results of 500 students was made. It was found that 220 6. had failed, 170 had secured a third class, 90 were placed in second class and 20 got a first class. Are these figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for the various categories respectively?

7. A die is thrown 120 times with the following results:

1 1	2	2	1	~	1
+		3	4	5	6
16	30	22	18	14	20
	16	1 2 16 30	1 10 30 77	1 10 30 77 19	1 10 1 30 1 77 1 19 1 14

Test the hypothesis that die is unbiased.

Department of Statistics, Karmaveer Bhaurao Petil Mahavidyalaya, Pandharpur.

Rayat shikshan Sanstha's

Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur

Department Of Statistics

B.Sc.-II (Practical-II)

77	T	0
Hynt	NO.	/ X
Expt	INO.	4.0

Date:-

Title: - Model sampling from Hypergeometric distribution

1. Draw a model of sample of size 14 from hyper geometric distribution with parameters

N=10, M=5, n=3.

Obtain mean and variance of your sample drawn and compare it with theoretical values.

2. Draw a model of sample of size 10 from hyper geometric distribution with parameters

N=20, M=10 and n=5.

Find A.M., G.M. and H.M. of your sample.

Department of Statistics, Karmave Patil Maharity Courses, Parour

Rayat shikshan Santha's

Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur

(Autonomous)

Department of Statistics

B.Sc.-I (Practical-I)

Expt. N.:-3

Date:-

Title: -Measures of Dispersion (ungrouped & grouped data).

1. For the following data:

9.4,9.1,9.7,8.8,10.6,10.0,10.9,12.3,11.2,8.6,15.5

Compute: i) Range & it's coefficients

ii)Quartile Deviation(Q.D.) & it's coefficients

iii)Inter Quartile Range (I.Q.R)

iv) Standard Deviation (S.D.) & it's coefficients

v) Coefficients of variation from following data.

Also find the same by using MS-EXCEL

Following are the marks obtained by 10 students in unit test:

14,8,11,10,13,16,10, 9,12,5

Compute: i) Mean deviation about mean.

- ii) Mean deviation about mode.
- iii) Mean deviation about median.
- 3. The number of runs scored by batsman A & B during the IPL innings are given below:

Batsman	5	26	97	76	112	89	6	108	24	16
Batsman B	5,1	47	36	10	58	39	44	42	71	50

i) Who is more run getter? ii) Who is more consistent?

iii) What is the combined C.V. of runs?

4. Following is the distribution of weight of newborn babies:

Weight(lbs.)	6	7	8	9	10	11	12
NoOf babies		10	16	24	21	16	6

Compute: i) Mean deviation about mode

ii)Quartile Deviation(Q.D)& it's coefficient

iii)Range & it's coefficient

Also find the same by using MS-EXCEL

Departmen of Statistics, Karmavee of Jurao Patil Mahavidyalaya, Pandharpur.

Rayat shikshan Sanstha's

Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur

(Autonomous)

Department Of Statistics

B.Sc.-I (Practical-I)

Expt No: 10

Date:-

Title: - Application of Independence Events

- 1. Suppose a card is drawn at random from a well-shuffled pack of playing cards. Let event A= getting a space card; B= getting a king. Are A and B independent?
- 2. Let $\Omega = \{\omega_1, \omega_2, \omega_3\}$ be a sample space associated with a certain experiment. If $P(\omega_1) = k$, $P(\omega_2) = 2k$ and $P(\omega_3) = k^2 + k$, find k. Also examine whether $A = \{\omega_1, \omega_2\}$ and $B = \{\omega_2, \omega_3\}$ are independent events.
- 3. A bag contains 4 tickets numbered 445, 454, 544 and 555. One ticket is drawn randomly. Let A_i (i=1, 2, 3) be the ith digit of the number of the tickets 4. Are A₁, A₂, A₃ i) pairwise independent? ii) Mutually independent?
- 4. A town has 3 doctors A, B and C operating independently. The probability that doctor A is available is 0.9 and that for B is 0.6, for C is 0.7. What is the probability that at least one doctor is available when needed?

Department of Statistics, Karmaveer Bhaurao Patil Mahavidyalaya, Pandharpur.