Semester II Minor Practical II ELE-206-VSC :(Based on ELE-204-MN)

Basics of Digital Electronics Lab-II

Course Objectives: Student should be able to...

- 1. Learn Basic Logic gates
- 2. Study of universal logic gates.
- 3. Know about Multiplexer circuit.
- 4. Understand the Encoder and Decoder circuit.

(Total Credits 2)	Semester II Practical II Basics of Digital Electronics Lab-II Group A		No. of Lectures (60 hr.)
	1	Study of Basic Logic gates. (7408,7432,7402)	4
	2	Study of Derived Logic gates. (7404,7486)	4
	3	Study of universal logic gates using NAND Gate.	- 4
	4	Study of universal logic gates using NOR Gate.	4
	5	Study of Demorgan's Theorem-I using gates.	4
	6	Study of Demorgan's Theorem-II using gates.	4
-	7	Study of Half adder circuits	4
	8	Study of Full adder circuits	4
		Group B	
·	1	Study of 4 to 1 Multiplexer.	4
	2	Study of 8 to 1 Multiplexer.	4
	3	Study of 1 to 4 De-Multiplexer.	4
	4	Study of 1 to 8 De-Multiplexer	· 4
_	5	Study of Encoder	4
-	6	Study of BCD to 7 Segment Decoder	4
	7	Study of Internet	4
	8	Study of Email	4

Course Outcomes: The students will be able to...

- Verify Basic Logic gates circuit.
- 2 Verify De-Morgan's Theorem.
- 3 Analyze different Multiplexer and De-Multiplexer.
- 4 Utilize Encoding and Decoding Techniques

Reference Books:

- Robert Boylestad and Louis Nashelsky, Electronic Devices and Circuit Theory, PHI,9th Edition, (2013)
- 2. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated, Tata McGraw Hill, (2002).
- Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw Hill,3rdEdition, (2002)
- 4. J. Millman and C. C. Halkias, Integrated Electronics, Tata McGraw Hill, (2001)
- R. C. Jaegar and T. N. Blalock, Microelectronic Circuit Design, Tata McGraw Hill4th Edition, (2010)
- J. J. Cathey, 2000 Solved Problems in Electronics, Schaum's outline Series, TataMcGraw Hill, (1991)